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ABSTRACT

More than 100 volatile organic compounds of natural and man-made origin were identified and determined in air samples collected in
forest and remote areas. The combined use of carbon adsorption traps and high-resolution gas chromatography-mass spectrometry
made possible the selective determination of polar compounds such as organic acids, alcohols and carbonyl compounds by selected-ion
detection. A comparison between the distribution and composition of volatile organic components recorded in Northern Europe, the
Mediterranean basin and the Himalaya region seem to be indicative of the ubiquitous occurrence of some polar organic compounds of
biogenic origin. The determinations carried out in the Italian Station built by the National Research Council (CNR) of Italy at the foot
of Mount Everest show clearly that, under favourable conditions, substantial amounts of organic pollutants of man-made origin can be

transported over unpolluted areas.

INTRODUCTION

Emission of large amounts of chemical com-
pounds into the atmosphere as a result of anthropo-
genic and biogenic processes results in a complex
array of chemical transformations ultimately lead-
ing to diverse effects on man and the environment.
Among them, photochemical air pollution, acid
deposition, changes in the stratospheric ozone layer
and global weather modifications are the most im-
portant [1]. For a long time, volatile organic com-
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pounds (VOC) have been recognized to be impor-
tant primary pollutants, acting as precursors of at-
mospheric pollution either in tropospheric and
stratospheric layers [1]. Because of the great com-
plexity of chemical reactions and emission, trans-
port and deposition processes, computer models
have been developed to predict the possible adverse
effects associated with increased emission of VOC
into the atmosphere [1-2].

In the last 15-20 years, validation of the chemical
mechanisms by computer models has been regarded
as one of the fundamental tasks to be pursued in
order to make model predictions sufficiently accu-
rate to be used for a targeted decrease in atmo-
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spheric pollution [2,3]. The comparison of observa-
tions with predictions implies, however, that both
the composition and concentrations of VOC pres-
ent in different air parcels are known in great detail
and with high accuracy. Particularly important is
the capability to detect biogenic components whose
emission from vegetation and microbial processes is
still largely unknown [4]. This is possible only if
analytical techniques capable of detecting both pre-
cursors and products of atmospheric reactions at
trace levels (pptv) are available.

Recently, the use of adsorption traps ﬁlled with
graphitic carbons combined with high-resolution
gas chromatography—mass spectrometry (HRGC-
MS) has been proposed as a suitable method for
investigating the composition of the organic frac-
tion with carbon numbers ranging between 4 and 14
[5]. More than 140 compounds exhibiting different
polarities (mainly alkanes, alkenes, arenes, alco-
hols, aldehydes and ketones) were identified in sam-
ples collected in urban and suburban areas of the
Italian peninsula and a pine forest located in Cen-
tral Italy [5,6]). To test further the accuracy of this
method and extend its capability to the identifica-
tion and determination of components emitted by
natural sources or formed by their photochemical
oxidation in air, additional experiments were car-
ried out in relatively unpolluted areas of Northern
Europe, the Mediterranean basin and in the Hima-
laya region close to the Mount Everest where a per-
manent station has recently been set up by the Na-
tional Research Council of Italy (CNR).

The analysis of these samples confirmed that the
method proposed is suitable for evaluating in a sin-
gle run a large number different classes of organic
components useful to assess the relative importance
of biogenic vs. man-made emission, investigate at-
mospheric processes and detect the influence of
transport in remote areas. In this paper the full
methodology for determining the various classes of
organic components that can be present in the at-
mosphere is described. The observations made are
discussed on the light of the present knowledge on
VOC emission and reactivity. Evidence for the im-
portance of transport in determining the levels of
organic pollutants in remote areas of the Himalaya
region is presented.
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Adsorption Traps

VOC present in volumes of air varying from 1 to
6 1 were collected on two-stage traps consisting of
glass tubes (15 cm x 0.3 cm I.D.) filled with Car-
botrap C (0.034 g) and Carbotrap (0.17-g) particles
ranging between 20 and 40 mesh. Both adsorbents
were supplied by Supelco (Bellefonte, PA, USA).
Graphitic carbons were preferred to more adsorb-
ing carbon materials (such as Carbosieve 1II) as
their hydrophobic surface and low specific surface
area prevented the adsorption of large amounts of
water and carbon dioxide on the traps, thus allow-
ing the mass spectrometric identification of volatile
components with carbon numbers higher than 2 [5].
Before sample collection, the traps were cleaned by
passage of a stream of pure helium at a flow-rate of
300 mi/min for 10 min at 285°C. After purging, the
traps were sealed with metal connectors equipped
with PTFE ferrules, wrapped in aluminium foil and
stored in a tightly closed glass container (3 1) in the
presence of open cartridges filled with a desiccant
and active charcoal to prevent contamination of the
trapping materials during transport. One sealed
trap in each container was used as a blank to check
whether accidental exposure of the container to
contaminants would have caused passive collection
of hydrocarbons in the sampled traps.

A high precision, battery-operated sampling de-
vice (Genesis Air Sampler; DuPont, Kenneth
Square, PA, USA) was used for the parallel collec-
tion of the same volume of air in two different traps.
After sampling, the traps were sealed and stored in
the glass container for shipment to the laboratory.
By adopting this procedure, VOC adsorbed on
traps were found to be stable for more then 2
months.

Desorption unit, GC-MS apparatus and columns
Hydrocarbon components retained on the car-
bon traps were transferred to the GC unit by ther-
mal desorption. A Chrompack (Middelburg, Neth-
erlands) purge and trap injector was adapted for
this purpose by eliminating the purging and drying
units. The unit operates according to a two-step
mechanism involving a cryofocusing process at the
column inlet to prevent band broadening of the GC
peaks in the capililary column. After the trap has
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been back-flushed at a flow-rate of 10 ml/min for 1
min, the gas stream is diverted to the cryofocusing
unit {(—150°C) containing a fused silica liner. The
flow-rate is then increased to 20 ml/min and main-
tained for 5 min through both the trap and liner
while the temperature of the trap is ballistically in-
creased to 250°C. The desorbed sample enriched on
the cryofocusing unit is subsequently transferred to
the GC column by increasing the temperature of the
fused-silica liner from — 150 to 230°C.

All separations were performed ona 60 m x 0.32
mm L.D. capillary column (J&W Rancho Cordoba,
CA, USA) coated with a 0.25-um film of DB-1. Af-
ter transfer of the sample, the column oven was
maintained at 5°C for 3 min, programmed to 50°C
at 3°C/min and then to 220°C at 5°C/min. A Model
5890 gas chromatograph (Hewlett-Packard, Palo
Alto, CA, USA) connected to a Hewlett-Packard
Model 5970 B mass spectrometer (mass-selective
detector, MSD) was employed for all GC-MS de-
terminations. Positive identification of the various
components was carried out by combining the in-
formation obtained through the analysis of mass
spectra with those acquired through the determina-
tion of the elution sequence determined by measur-
ing the retention indices of a large number of pure
components. When standards were not available,
retention indices reported in the literature were used
for peak identification [7]. Selected-ion detection
was preferred for identification and quantification
purposes whenever eluted compounds were charac-
terized by fragmentation patterns where specific
ions could have been used for unambiguous deter-
minations.

Sites investigated

Forest samples were collected in eastern Germa-
ny and Central Italy. Eastern Germany was selected
because it is covered by large wooded areas highly
representative of the vegetation present in the
northern hemisphere at high latitudes (i.e., North-
ern Europe, USA and Canada).

Sampling was carried out inside a large pine for-
est located at Storkow, 30 km south east of Berlin
and not far from the Polish border. More than 30
samples were collected during daytime and at night
during the second half of July.

The site located in Central Italy was representa-
tive of the “Mediterranean Macchia”, a wooded
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area mainly characterized by deciduous trees mixed
with short plants growing near the sea shore. The
presence of pine trees (Pinus pinea, Pinus aleppensis,
Douglasia) is also frequent. This type of forest,
common in Southern Europe from Spain to Greece,
gives rise to an intense smell associated with a
strong emission of VOC caused by the presence of
aromatic and scented herbs and the occurrence of
the high temperatures typical of temperate regions.
Sampling was performed in a large, protected area
located 25 km west of Rome. Also in this case, a
large number of samples were collected during the
winter season when reduced impact from the urban
area occurred.

The VOC distribution existing in remote areas
was investigated by collecting air samples at the
Italian Station installed by CNR in Nepal. Estab-
lished since 1990, it is located at an altitude of 5050
m at the foot of Mount Everest (8848 m) in the
middle of the National Park of Sagarmatha. It can
be reached from the Lobuche camp in a 6-day trek
and only during the favourable season (end of the
monsoon season). The station consists of a glass
pyramid built on a small hill next to a gorge be-
tween two large glaciers. As power generation is
partly ensured by solar cells covering the glass win-
dows and partly by a small hydroelectric generator,
no direct emission of man-made VOC could have
affected the determinations. Air samples were taken
during the 1991 expedition that started at the begin-
ning of September and ended in the middle of Octo-
ber. This activity was part of a larger programme

" (Ev-K2-CNR) involving research in geological, en-

vironmental and biological fields and studies on ad-
vanced technologies.

RESULTS AND DISCUSSION

Figs. 1-3 show the total ion current (TIC, m/z
34-200) profiles obtained by submitting to GC-MS
analysis air samples collected at the three different
sites. The peak numbers refer to the compounds
listed in Table I, where the retention time, retention
index and amount detected are also reported for
each component identified in the various samples.

The VOC are grouped into classes in order to
distinguish better compounds released -by anthro-
pogenic sources (alkanes, arenes and partly alkenes)
from those suspected to be associated with biogenic
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Fig. 1. GC-MS profile of a sample collected in a Northern European pine forest (Storkow, Germany). The trace is the reconstructed
chromatogram obtained by using a mass window ranging from m/z 34 to 200. Peak numbers refer to the compounds listed in Table I.
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Fig. 2. GC-MS profile of a sample collected in a “Mediterranean Macchia” in Central Italy (Castel Porziano). The trace is the
reconstructed chromatogram obtained by using a mass window ranging from m/z 34 to 200. Peak numbers refer the compounds listed
in Table L.
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Fig. 3. GC-MS profile of a sample collected at the Italian Station in Nepal. The trace is the reconstructed chromatogram obtained by
using a mass window ranging from m/z 34 to 200. Peak numbers refer to the compounds listed in Table I.

emission (some alcohols, aldehydes and ketones).
Monoterpenes are listed separately as together with
isoprene they are the most abundant organic com-
ponents emitted by trees, being present in large
amounts in the oil cells of leaves [8]. In Table I, the
number of individual components identified in each
class into which the VOC were grouped is reported
and the net and relative contributions of the various
classes to the whole organic fraction are also given.

The GC-MS profiles in Figs. 1-3 were accurately
selected from more than 70 samples in order to
highlight the complexity of the VOC distribution
found in each of the areas investigated. As both
natural and man-made emissions and photochem-
ical reactions taking place in the atmosphere change
rapidly from day- to night-time, and are strongly
influenced by the meteorological conditions and
seasonal variations, it is not surprising that the
greatest complexity of the VOC distribution of the
samples shown in Figs. 1-3 was realized at different
times of the day. For the pine forest sample, the
largest number of components was recorded ed at
night when polar components remaining from the
daytime hours were still present in the air together

with monoterpene compounds not removed by re-
action with OH radicals and ozone. In the “Medi-
terranean Macchia”, where monoterpene emission
was restricted to a-pinene released by some pine
trees, the greatest complexity was rather realized in
the middle of the day when high temperatures pro-
moted substantial emissions of polar components
from plants and/or photochemical reactions led to
their formation. In this instance, low emission com-
bined with fast removal by reaction with OH rad-
icals can reasonably explain the low levels of a-pine-
ne found in this sample. Although some day-to-day
variations occurred in the VOC concentrations in
forest samples collected in Northern and Southern
Europe, they were mainly affecting the anthropo-
genic fraction and thus are attributed to the vari-
able extent to which man-made emissions and their
transport were influencing the sites. Daily profiles
of natural components were, instead, fairly regular
with a high abundance of monoterpene compounds
at night and maximum levels of polar compounds
around noon.

Within the above-mentioned limitations, the
mass chromatograms shown in Figs. 1 and 2 can be
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taken as reasonably representative of the areas in-
vestigated. In particular, the monoterpene and car-
bonyl fractions observed in the German forest seem
to reflect well the composition that can be found in
almost any pine forest, being similar to that mea-
sured in the wooden area of Monti Cimini Park
(Central Italy), also characterized by a high density
of pine trees [5].

It was difficult to define a “typical” situation for
the samples collected in Nepal. At an altitude of
5050 m the vegetation is restricted to musks and
lichens, the fauna is scarce and anthropogenic emis-
sions are almost non-existent, hence the composi-
tion and levels of VOC are mainly determined by
transport phenomena and are thus strongly influ-
enced by the meteorological conditions occurring
during sampling. In the 1991 expedition, some days
were dominated by strong ascending currents carry-
ing VOC emitted by natural and man-made sources
located far down in the valley up to the station
(southern winds), whereas other days were charac-
terized by the descent of cold air masses moving
from the mountains downward to the valley (north-
ern winds). In the latter instance, a substantial re-
moval of VOC away from the sampling site was
taking place. Owing to the dramatic difference in
the VOC composition and concentration associated
with these two circulation patterns, we have report-
ed in Fig. 3 the mass chromatogram of a sample
collected when only light winds (< 1-2 m/s) were
blowing (sample B, 7.30 a.m.). Under these condi-
tions, the concentration of VOC in air was mainly
determined by local emissions and the organic spe-
cies remaining from the previous days.

To give an idea of the levels associated with the
different air mass circulation occurring at the Hima-
laya station, we have also reported in Table I the
VOC concentrations measured when prevailing
winds were blowing from the southern (sample
K2-A, 7 p.m.) and northern sectors (sample K2-C2,
6 p.m.).

Although the number of individual components
found in forest and remote sites was usually lower
than that observed in urban areas [5,6], all samples
were characterized by a higher complexity than that
existing in heavily impacted airsheds because of the
numerous classes of polar organic compounds pre-
sent in the atmosphere. In addition to alkanes, al-
kenes, arenes, aldehydes, ketones, isoprene and
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some monoterpene components also detected at dif-
ferent levels in many urban and suburban samples,
a complex array of free acids, esters, alcohols and
furans was found. Although some of these polar
components were sometimes found in urban and
suburban airsheds [5,6], their abundance was not
such that specific detection was required.

The huge amounts of acids present in the chro-
matograms in Figs. 2 and 3 giving rise to a large,
overloaded peak in the first part of the chromato-
gram (peak No. 43), coupled with the constant and
detectable presence of alcohols from ethanol to hex-
anol and numerous aliphatic esters in the samples
collected in the “Mediterranean Macchia” and the
Himalaya region, suggested that selected-ion detec-
tion was necessary to elucidate better the complex
array of polar and non-polar components present in
forest and remote areas. This approach was found
to be particularly useful for investigating the pres-
ence of organic acids, aldehydes, alcohols and ter-
penes.

An example of the information provided by mass
spectrometry with selected-ion detection is reported
in Fig. 4, where the total ion current profile of a
sample collected at the Himalaya station (K2-A, 7
p-m.) is displayed together with the mass chromato-
grams used for the identification of some specific
classes of components listed in Table I. The ion at
m/z 31, corresponding to the oxonium ion
([CH,OH]*) formed by the cleavage of the carbon—
carbon bond next to the a-carbon atom, was specif-
ic for the identification of many primary and sec-
ondary alcohols whereas the ion at m/z 44
(ICHCHOH] "), coming from the rearrangement of
the y-hydrogen available for transfer to the carbon
oxygen followed by the cleavage of the carbon bond
in the B-position (McLafferty rearrangement), al-
lowed the selective determination of all aldehydes
with carbon numbers > 3. The ion at m/z 60 corre-
sponding to the molecular ion of acetic acid and to
a fragment coming from the McLafferty rearrange-
ment ((CH,C(OH),]*) typical of aliphatic acids
with carbon numbers >4 was used for the selective
detection of many acidic components. Recording of
the molecular ion (m/z 74 not displayed in Fig. 4)
was, instead, necessary for the identification and
evaluation of propionic acid. The HRGC-MS pro-
file of the cyclic ion at m/z 93, derived from the
sequential loss of aliphatic chains from the terpen-
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Fig. 4. Total ion current (m/z 34-200) and selected-ion detection profiles used for the identification of alcohols, aldehydes, acids and
monoterpene compounds present in a sample collected at the Italian station in Nepal. The profile refers to sample K2-A in Table I. For

peak identification, see Table 1.

oid structure, allowed the specific detection of
monoterpene compounds present at trace levels in
the air samples.

Selected-ion detection was also extensively ap-
plied to the determination of other co-eluted com-
ponents of natural and man-made origin (i.e., alkyl-
benzene isomers or 6-methyl-5-hepten-2-one and
phenol). Profiles relative to these organic species are
not shown in Fig. 4 as the approach followed was
the same as that used for investigating urban and
suburban airsheds and examples of selected-ion
mass chromatograms already published [5].

The analysis of samples characterized by substan-
tial amounts of polar components was extremely
useful from the methodological viewpoint as it
showed the capability of carbon traps to retain and
release in a quantitative way very polar organic
compounds (particularly alcohols, aldehydes, ke-
tones, esters and free acids) with a wider range of
carbon numbers than reported previously (C,-Cs,
depending on the functional group). It also suggest-
ed that HRGC-MS determination of aliphatic
acids might be competitive with methods based on

denuder collection followed by liquid ion chroma-
tography [9], as it makes it possible to detect all
homologues members from acetic to nonanoic acid
and to distinguish between isomeric components
(see the peaks 82 and 94 in Fig. 4). Of course, a
different column from that used for generating the
mass chromatograms in Fig. 4 would be necessary
for better identification and quantification purpos-
es.
A detailed knowledge of the VOC distribution
and composition present in forest and remote areas
was also useful for assessing the possible origin of
individual components. The high abundance of
semi-volatile aldehydes, ketones (particularly 6-
methyl-5-hepten- 2-one, known to be emitted by
flowers and fruits), esters, alcohols and acids with
respect to isoprene and monoterpene components
of natural origin, alkanes, alkenes, arenes, chloro-
fluorocarbons and trimethylsilanol of anthropogen-
ic origin and benzaldehyde of photochemical origin
seem to be highly indicative that the largest propor-
tion of polar components comes from natural
processes. Whereas carbonyl compounds, esters
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and alcohols are common constituents of the essen-
tial oils and fragrances extracted from plants and
flowers [10] and some of them have been already
detected in natural emission [4,11-13] and forest en-
vironments [5,14], organic acids might arise from
either photochemical oxidation or microbial degra-
dation of organic compounds [15].

The prevalence of aliphatic acids with an even
number of carbon atoms found in many of the sam-
ples investigated and the low concentrations of
ozone present in the European forest during the
monitoring campaign seem to be highly suggestive
of microbial origin. Also, the presence of carbon
disulphide in one of the samples coliected at the
Himalaya site is not surprising as it is emitted to-
gether with carbonyl sulphide from different soils
and plants [16]. It is more difficult to assign a defi-
nite source to 2-methylfuran, although the lack of
this component in the urban and suburban airsheds
[5,6] might be highly indicative of its biogenic ori-
gin.

Although the classes of polar VOC and levels
measured in the wooden areas of Northern and
Southern Europe were basically the same as those
found at the Himalaya station, different distribu-
tions of the individual components present in each
class were observed. This difference is particularly
evident for aldehydes, as nonanal and decanal were
the most abundant components recorded in the Eu-
ropean forests whereas an almost Gaussian distri-
bution centred on hexanal was found at the Hima-
laya station. This difference might be attributed ei-
ther to the type of biogenic emission prevailing in
the various sites (i.e. trees vs. short vegetation) or
condensation processes that selectively removed
high-boiling components from the air masses carry-
ing VOC to the Himalaya station. The first hypoth-
esis is supported by some laboratory experiments
showing that aldehydes and ketones with carbon
numbers ranging from 4 to 8 can be emitted by
short vegetation growing under the canopy of
Northern European forests [11] or plants growing
in the California basin [4]. However, these results
are somehow in contrast with the aerometric deter-
minations carried out in forest areas [5,6,14] show-
ing that, similarly to the results in Figs. 1 and 2,
nonanal and decanal are the most abundant car-
bonyl components present in air and they account
for a large proportion of the whole organic fraction.
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In our opinion, the predominance of hexanal at the
samples collected in the Himalaya station can be
better explained by the progressive depletion of
high-boiling components taking place into the air
masses during their travel towards the site. It is like-
ly that the lowering of temperature associated with
ascent of the air masses from the valley to the
mountains, where daytime temperatures are close
or below to 0°C, caused an efficient conversion of
high boiling VOC into particles, thus promoting
their removal from the airshed by wet and dry dep-
osition processes. Evidence of transport of VOC in-
to the station is provided by the data recorded when
southern winds were blowing over the monitoring
site. If we consider the concentrations measured on
September 28th at the Himalaya station (sample
K2-A in Table I, the chromatogram of which is re-
ported in Fig. 4), we can see that levels of man-
made emitted VOC (alkanes, alkenes, arenes, tri-
methylsilanol and some chlorinated hydrocarbons)
much higher than those existing in the European
forests were reached during the afternoon. This,
combined with the occurrence of substantial
amounts of monoterpene hydrocarbons known to
be emitted by pine trees not growing at such high
altitudes, can be taken as highly indicative of the
fact that VOC present in the samples from the Hi-
malaya station were actually emitted far away from
the site where natural emission from forests was
mixed with organic emissions released by anthropo-
genic processes (mainly combustion of biomass
fuels for house heating and charbroiling or meat-
cooking operations).

The dramatic difference with the VOC composi-
tion measured when Northern winds were removing
VOC from the station is clear if we compare the
results for the sample collected on September 29th
with that taken on October 4th at 6 p.m. (sample
K2-C2 in Table I). In the latter instance a total
VOC content one order of magnitude lower than
that measured when polluted airsheds reached the
site was measured. No presence of monoterpene hy-
drocarbons was detected and negligible amounts of
arenes (benzene and toluene) were present in the
sample. The major components were oxygenated
compounds of natural origin whereas much lower
levels of halogenated hydrocarbons of man-made
origin were detected. Trimethylsilanol was below
the detection limit. A comparison with the levels
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obtained on October 4th in the morning (sample
K2-C1 in Table I) when low circulation occurred
seems to suggest that the prevalence of northern
winds in the afternoon hours caused a substantial
removal of VOC from the sampling site by trans-
porting them back to the valley. Although the ob-
servation that pollution levels recorded in the re-
mote Himalaya station can be much higher than
those measured in forest areas of heavy industri-
alized countries of Europe might appear surprising,
it is perfectly in line with the observations of David-
son et al. [17], who found that the excessive per cap-
ita use of biomass fuels in Nepalese houses gives
rises to quite high levels of pollution in the Hima-
laya region. Owing to the high indoor concentra-
tions of organic compounds existing in Nepal, levels
as high as 5 and 8 ug/m? were measured in outdoor
samples collected outside one house in Sundarjial.
The indications given by the sample collected on
September 28th, 1991, seem to suggest, however,
that anthropogenic emission might be even higher
than that measured by Davidson et al., giving rise
to toluene concentrations as high as 30 ug/m3. It is
also possible that further injection of organic pollu-
tants into polluted air masses coming from the Indi-
an peninsula might be responsible for the levels
reached at the Himalaya station when southern
winds were dominating the air mass circulation.
The observation that levels of benzene and toluene
measured on the following days were close to those
expected to be present in unpolluted atmospheres
(ca. 0.5 and 0.6 ug/m3, respectively) highlights the
importance of transport phenomena in affecting the
air quality of remote Himalaya regions. Whatever
the cause (local emissions, long-range transport or a
combination of both) leading to high levels of or-
ganic pollutants is, it must be regarded a serious
source of concern for the preservation of the Ever-
est environment owing to the possible formation of
photochemical pollution and enhanced acid deposi-
tion arising from the exposure of such pollutants to
the intense UV radiation existing at high altitudes.
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